Homework Set 0: Remembering Math
Due: Monday, August 28, 2023

To get your math neurons firing again, perform the following operations (you MAY USE THE CRC):
$\frac{d}{d t} e^{-k t}=$
$\frac{d}{d t} \frac{1}{k t}=$
$\frac{d}{d t} \ln (k t)=$
$\int e^{-k t} d t=$
$\int \frac{d t}{k t}=$
$\int \ln (t) d t=$
$\int \frac{d t}{1+k t}=$
$\int \frac{t d t}{1+k t}=$
$\int \frac{t d t}{1+k t^{2}}=$

The hyperbolic functions that we'll use are defined as

$$
\sinh (z)=\frac{1}{2}\left(e^{z}-e^{-z}\right) \quad \cosh (z)=\frac{1}{2}\left(e^{z}+e^{-z}\right)
$$

Use the first one to show that ("show" means start with the first expression and derive the second)

$$
\sinh ^{-1}(z)=w \quad \Rightarrow \quad \sinh ^{-1}(z)=\ln \left(z+\sqrt{z^{2}+1}\right)
$$

(hint: start with $2 z=e^{w}-e^{-w}$ and solve for $w . .$. you'll have to solve a quadratic in $e^{2 w}$ (\& $e^{w} \& 1$) and note that since the radical is always \pm, technically, $\pm \sqrt{ }=+\sqrt{ }$)

Then show that

$$
\frac{d}{d z} \ln \left(z+\sqrt{z^{2}+1}\right)=\frac{1}{\sqrt{z^{2}+1}}
$$

Then show that (The CRC will give you the firstexpression. Show how to get the second.)

$$
\frac{d}{d z} \cosh ^{-1}\left(e^{k z}\right)=\frac{k}{\sqrt{1-e^{-2 k z}}}=\frac{k e^{k z}}{\sqrt{e^{2 k z}-1}}
$$

